If it's not what You are looking for type in the equation solver your own equation and let us solve it.
168=4.9t^2
We move all terms to the left:
168-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+168=0
a = -4.9; b = 0; c = +168;
Δ = b2-4ac
Δ = 02-4·(-4.9)·168
Δ = 3292.8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{3292.8}}{2*-4.9}=\frac{0-\sqrt{3292.8}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{3292.8}}{2*-4.9}=\frac{0+\sqrt{3292.8}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| x2–x–6=0 | | y/8=500 | | 8b-3=4b+25 | | 3y/5=750 | | (1-1/k^2)100=98 | | 1075=30a | | 16+3b=128 | | 3(2x+4)=7x-5)+7x | | 2y-5=380 | | 0.8=32/x | | 3x2+28x+9=0 | | 5(y+10+4)=180 | | 27x^2+36x-13=0 | | 4^x=52 | | Y=-1q | | 42+5x=11x | | 5=-6x=61 | | 8-w=3w | | 2x-8/2+7=x+7/7+8 | | Y-3=1/2x+1 | | 3x^2−29=8 | | 165=(2x+8)(2x+4) | | 3x2−29=8 | | 10t^2=7t+1 | | 3a-6(a-8)=42 | | 8v=3v+40 | | 10p-28=20-2p | | 16^x+7=3^-8x | | (2(x-7)/3x+5)-2/5=0 | | 40p+50=p | | 14-x+3=15 | | -5=50+-5x |